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Summary

This paper describes an implementation of the Message
Passing Interface (MPI) on the Portals 3.0 data move-
ment layer. Portals 3.0 provides low-level building blocks
that are flexible enough to support higher-level message
passing layers, such as MPI, very efficiently. Portals 3.0
is also designed to allow for programmable network in-
terface cards to offload message processing from the
host processor, allowing for the ability to overlap compu-
tation and MPI communication. We describe the basic
building blocks in Portals 3.0, show how they can be put
together to implement MPI, and describe the protocols of
our MPI implementation. We look at several key opera-
tions within the implementation and describe the effects
that a Portals 3.0 implementation has on scalability and
performance. We also present preliminary performance
results from our implementation for Myrinet.
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1 Introduction

The emergence of cluster computing as a viable plat-
form for high performance computing has been realized
due to significant performance increases in commodity
computing and networking hardware. In particular, rela-
tively inexpensive programmable network interface cards
(NICs), such as Myrinet (Boden et al., 1995), that are
capable of delivering gigabit-per-second speeds, have
allowed for much research into low-level message pass-
ing protocols and message passing interfaces (von Eicken
et al., 1992, 1995; Ishikawa et al., 1996; Pakin et al., 1997;
Myricom, Inc., 1997; Compaq et al., 1997; Prylli and
Tourancheau, 1998). Most of this research has been
focused on delivering latency and bandwidth performance
as close as possible to the limitations of the hardware.

In several aspects, the research on clusters of personal
computers (PCs) with gigabit networking hardware is
addressing many of the same problems that proprietary
distributed-memory message passing parallel machines
of the early 1990s faced. Despite the differences in hard-
ware architecture between custom-built parallel machines
and today’s PC cluster, many of the issues with respect
to delivering network performance to parallel applica-
tions are similar.

The Portals (Brightwell et al., 1999, 2002) data move-
ment interface (Portals 3.0) is an evolution of networking
technology initially developed for large-scale, distributed
memory, massively parallel systems. Portals began as a
key component of our lightweight compute node operat-
ing systems (Maccabe et al., 1994; Shuler et al., 1995),
and has evolved into a functional interface that can be
implemented efficiently for different operating systems
and networking hardware. In particular, Portals provides
the necessary building blocks for higher-level protocols
to be implemented on programmable or intelligent net-
work interfaces without providing mechanisms that are
specific to each higher-level protocol. This paper describes
how these building blocks and their associated seman-
tics can be combined to support the protocols needed for
a scalable, high performance implementation of the
Message Passing Interface (MPI) Standard (MPI Forum
1994). Portals is the basis for the Computational Plant
(Cplant™) (Brightwell et al., 2000) cluster at Sandia
National Laboratories, and the MPI implementation
described in this paper has been used on our large-scale
production machines for the last two years.
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The rest of this paper is organized as follows: In the
next section, we give a brief overview of the Portals 3.0
API. In Section 3, we present the initial implementation
of MPI on Portals 3.0. Section 4 describes a problem
that we encountered with this implementation and Sec-
tion 5 describes a second implementation of MPI that
uses a new semantic added to Portals to overcome this
limitation. We discuss the benefits of our implementa-
tion with respect to progress in Section 6. We present
performance data in Section 7 and summarize the key
points of this paper in Section 8. We conclude with a
discussion of ongoing and future work in Section 9.

2 Portals 3.0

The Portals 3.0 API is composed of elementary building
blocks that can be combined to implement a wide vari-
ety of higher-level data movement layers such as MPI.
We have tried to define these building blocks and their
operations so that they are flexible enough to support
other layers in addition to MPI. For example, the Cplant™
parallel runtime system (Brightwell and Fisk, 2001) is
built on top of Portals, and there is currently an effort
underway to build a parallel file system on top of Por-
tals (Braam et al., 2002). However, MPI was certainly
our main focus. The following sections describe Portals
objects and their associated functions.

The Portals library provides a process with access to
a virtual network interface. Each network interface has
an associated Portal table that contains at least 64 entries.
The table is simply indexed from 0 to n -1, and the
entries in the table normally correspond to a specific
high-level protocol. Portal indexes are like port numbers
in Unix. They provide a protocol switch to separate mes-
sages intended for different protocols.

Data movement is based on one-sided operations.
Other processes can use a Portal index to read (get) or
write (put) the memory associated with the remote Portal.
Each data movement operation involves two processes,
the initiator and the target. In a put operation, the initi-
ator sends a put request containing the data to the target.
The target translates the Portal addressing information
using its local Portal structures. When the request has
been processed, the target may send an acknowledg-
ment. In a get operation, the initiator sends a get request
to the target. The target translates the Portal addressing
information using its local Portal structures and sends a
reply with the requested data.

Typically, one-sided operations use a triple to address
remote memory: <process id, buffer id, offset>. In addi-
tion, Portal addresses include a set of match bits. Fig-
ure | presents a graphical representation of the structures
used to translate Portal addresses. The process id is used
to route the message to the target node. The buffer id is
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Fig. 1 Portal addressing structures.

used as an index into the Portal table, and this identifies
a match list. The match bits (along with the id of the ini-
tiator) are used to select a match entry (ME) from the
match list. The match entry identifies a list of memory
descriptors (MDs). An MD identifies a logically contig-
uous region of user memory and optionally contains an
event queue (EQ).

A match entry (ME) provides message selection based
on: the initiator, 64 match bits, and 64 ignore bits. The
initiator can be “wildcarded” to allow matching with
any process id. Match bits are 64-bit values that can be
used for further selection. The match bits can be selec-
tively “wildcarded” using the ignore bits.

The MEs in a match list are searched in sequential
order. If an ME matches the request, the first memory
descriptor associated with the ME will be tested for accep-
tance of the message. If the ME does not match the
message or the MD rejects the message, the message
continues to the next ME in the list. If there are no fur-
ther MEs, the message is discarded. An ME also has the
option of being unlinked from the list after it has been
consumed. The following section will help to define
what it means for an ME to be consumed.

Memory descriptors have a number of options that
can be combined to increase their utility. They can be
configured to respond to put operations, get operations,
or both. Each MD has a threshold value that determines
how many operations can occur before it becomes inac-
tive. In addition, each MD has an offset value which can
be managed locally or remotely. When it is managed
locally, the offset is increased by the length of each
message that is deposited into the MD. Consecutive
messages will be placed in the user’s memory one after
the other. MDs can specify that an incoming message
which is larger than the remaining space will be trun-
cated or rejected.

By default, MDs generate acknowledgments to the
process that initiated the successful operation. An incom-
ing put operation can request that an acknowledgment
be delivered to the originating process. An acknowledg-
ment contains information about the result of the opera-
tion at the destination process. The decision to generate
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an acknowledgment in response to an operation requires
input from both the initiator and the target. The initiator
must request an acknowledgment and the MD used in
the operation must be configured to generate an acknowl-
edgment.

MDs can be chained together to form a list. More-
over, each MD can be configured to be unlinked from
the list when it is consumed (i.e., when its threshold
becomes zero). When the last MD in the list is con-
sumed and unlinked, the associated ME also becomes
inactive. Each ME can also be configured to unlink
when it becomes inactive.

MDs may have an associated event queue (EQ). EQs
are used to record operations that have occurred on
MDs. Multiple MDs can share a single EQ, but an MD
may only have one EQ.

EQs are composed of individual events kept in a cir-
cular buffer in the application’s address space. There
are five types of events that represent the five opera-
tions that can occur on an MD:

Get Event Generated when an MD responds to a get
request.

Put Event Generated when an MD accepts a put opera-
tion.

Sent Event Generated when it is safe to manipulate the
memory region used in a put operation.

Reply Event Generated when the reply from a get oper-
ation is stored in an MD.

Ack Event Generated when a acknowledgment arrives
from the target process.

In addition to the type of event, each event records the
state of the MD at the time the event occurred.

3 Initial MPI Implementation

In this section, we describe our MPI implementation for
Portals 3.0. This implementation is a port of MPICH
(Gropp et al., 1996) version 1.2.0. It uses a two-level
protocol, based on message size, to optimize for short
message latency and optimize for bandwidth for large
messages. In addition to message size, the different pro-
tocols are used to meet the semantics of the different
MPI send modes.

3.1 MATCH BITS

Figure 2 shows how the 64 match bits are used. We use
the match bits to encode the send protocol (3 bits), the
MPI communicator (13 bits), the local rank (within the
communicator) of the sending process (16 bits) and the
MPI tag (32 bits). During MPI Init (), we set up
three Portal table entries. The receive Portal is used for
receiving MPI messages. The read Portal is used for
unexpected messages in the long message protocol. The
ack Portal is used for receiving acknowledgments for
synchronous mode sends. We also allocate space for
handling unexpected messages, the implementation of
which we will describe below. After these structures
have been initialized, all of the processes in the job call a
barrier operation to ensure that all have been initialized.

3.2 SHORT MESSAGE PROTOCOL

In our implementation, we use an eager protocol for
short messages (standard and ready sends). The entire
user buffer is sent immediately and “unexpected mes-
sages” (when there is no pre-posted receive) are buf-
fered at the receiver.
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For standard sends, we allocate an MD to describe
the user buffer and an EQ associated with the MD. We
configure the MD to respond to put operations and set
the threshold to one. We create an address structure that
describes the destination and fill in the match bits based
on the protocol and MPI information. Using the Portal
put function, we send the MD to the receive Portal of
the destination process, requesting that no acknowledg-
ment be sent. This send is complete when an event indi-
cating that the message has been sent appears in the EQ.
Figure 3 presents a timing diagram for the short send.

For synchronous sends, we need to know when the
message is matched with a receive. We start by allocat-
ing an MD and an EQ as described earlier. Next, we
build an ME that uniquely matches this message. This

ME is associated with the MD allocated in the previous
step and attached to the local ack Portal. We configure
the MD to respond to acknowledgments and put opera-
tions and set the threshold to two. When the Portal put
operation is called, we request an acknowledgment, and
include the match bits for the ME in 64 bits of
out-of-band data, called the header data.

Completion of a short synchronous mode send can hap-
pen in one of two ways. If the matching receive has been
posted, an acknowledgment is generated by the remote
memory descriptor as illustrated in Figure 4. If the
matching receive is not posted, the message is buf-
fered until the matching receive is posted. At this point,
the receiver will send an explicit acknowledgment mes-
sage using the Portal put operation, as illustrated in Fig-
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Fig. 5 Short synchronous send protocol (unexpected).

ure 5. A short synchronous mode send completes when
the PTL EVENT SENT event has been recorded and either
the PTL_EVENT ACK event or the PTL_EVENT PUT
event has been recorded.

3.3 LONG MESSAGE PROTOCOL

Unlike most MPI implementations, we also use an eager
protocol for long messages. That is, we send long mes-
sages assuming that the receiver has already posted a
matching receive. Because the message could be dis-
carded, we also make it possible for the receiver to get
the message when it does post a matching receive.

We start by inserting an ME that uniquely describes
this send on the read Portal. We create an MD that
describes the user buffer. This MD is configured to
respond to put operations, get operations, and ack oper-
ations. Since all three of these may occur, we set the
MD’s threshold to three. We then attach the MD to the
ME. We set the protocol bits in the match bits for a long
send and fill in the other match bits appropriately. We
call the Portal put function, requesting an acknowledg-
ment, and we include the match bits of the ME in the
header data.

As with the short synchronous mode sends, the long
send protocol can complete in one of two ways. First, if
the message is expected at the receiver, an acknowledg-
ment is returned. In this case, the event queue will contain
a PTL _EVENT SENT event and a PTL_EVENT ACK

event. After these two events have been recorded, the
send is complete. This is illustrated in Figure 6.

If the message was not expected, an acknowledgment
is returned to the sender indicating that the receiver
accepted zero bytes. The sender must then wait for the
receiver to request the data from the sender’s read Portal.
In this case, three events mark the completion of the send:
a PTL EVENT SENT event,a PTL EVENT ACK event,
and a PTL, EVENT GET event. This is illustrated in Fig-
ure 7.

Since the completion of this send protocol is dependent
on a matching user buffer being posted at the receiver,
this protocol is the same for standard mode and syn-
chronous mode sends. Moreover, the ready mode send
for long messages is identical to a short standard mode
send. Since the MPI semantics guarantee that a match-
ing buffer is posted at the receiver, the sender need not
wait for an acknowledgment or set up an entry on the
read Portal.

3.4 POSTING RECEIVES

Posting a receive involves two lists: the posted receive
list and the unexpected message list. The unexpected
message list holds messages for which no matching
receive has been posted. Before a receive can be added
to the posted receive list, we must search the unexpected
list. Figure 8 illustrates the match list structure we use
to represent these two lists. This list starts with entries
for the posted receives (no entries are shown), followed
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Fig. 8 Message reception in the initial implementation.

by a mark entry that separates the two lists, followed by
entries for unexpected messages.

When a process calls an MPI receive, we create an
MD that describes the user buffer. The MD is configured
to accept put operations, generate acknowledgments,
unlink when used, and is given an initial threshold of
zero (making the MD inactive). The communicator id,
source rank within the communicator, and message tag
are translated into match bits. We use these match bits
along with the MD to build an ME which is inserted just
in front of the mark entry in the match list.

Next, we search the unexpected messages for a match.
In our implementation, unexpected messages can appear
in two places. Initially we look for unexpected mes-
sages in a queue of Portal events that the MPI library
maintains. These events initially appear in an EQ asso-
ciated with the MDs for unexpected messages. This EQ
is shown in Figure 8. Since events are “consumed” when
they are removed from the EQ, we must hold on to them

if they do not match the receive we are processing. The
queue in the MPI library holds on to these unmatched
events. If we do not find a matching message in the
library queue of events, we check the EQ to see if a
matching message has arrived.

We now have an ME and an MD that describe the
receive operation to be posted, but we must ensure that
no further messages have arrived that match this receive
before it can be posted. The process of checking the
unexpected queue and posting a receive must be atomic.
To accomplish this, Portals has a function that will acti-
vate an MD if and only if a given EQ is empty. If there
are no pending events, the MD is activated. If there are
pending events, the EQ is again checked for a matching
message.

If we find a match, we unlink the ME from the match
list and take the appropriate action based on the proto-
col bit in the message. If the message is a long protocol
message, we activate the MD and perform a Portal get
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Fig. 9 Message reception in second implementation.

operation, which reads the send buffer from the sender.
If the message is a short protocol message, we simply
copy the contents of the unexpected buffer into the user’s
receive buffer. If the header data in the event is nonzero,
this indicates that the send is synchronous. In this case,
we send a zero-length message to the acknowledgment
Portal at the sender using the Portal put operation.

4 Limitations

When the MPI library is initialized, we create two MEs,
one for unexpected short protocol messages and another
for unexpected long protocol messages. The ME for short
messages will match any message that has the short
message bit set. There are 1024 MDs attached to this
ME. Each MD provides an 8 KB memory buffer, has a
threshold of one, is configured to accept put operations,
and does not automatically generate an acknowledgment.
The match entry for long unexpected messages has an
MD of zero bytes with an infinite threshold that is con-
figured to accept and truncate put operations and auto-

matically generate an acknowledgment. All of the MDs
for unexpected messages are attached to the same EQ to
preserve message ordering. This EQ is created with
2048 entries.

Despite being able to support 1024 outstanding unex-
pected short messages at any time, this limitation proved
to be too restrictive in practice, especially as applications
scaled beyond 512 processes. Our application developers
typically think of limits in terms of messages size rather
then message counts. In our implementation, an unex-
pected message of 0 bytes would consume an 8 KB MD.
To an application developer, this message shouldn’t con-
sume any buffer space at all. Moreover, in a NIC-based
implementation, 1024 MDs consumes a significant amount
of a limited resource, NIC memory, leaving fewer MDs
for posted receives.

5 Second Implementation

To address these problems, an additional threshold seman-
tic was added to MDs. An MD could be created with a



maximum offset, or high-water mark. Once this offset
was exceeded, the MD would become inactive. Figure 9
illustrates our new strategy for handling short protocol
unexpected messages. We now create three MEs for unex-
pected short messages, all with identical selection crite-
ria. Each ME has an MD attached to it that describes a
2 MB buffer. As unexpected messages come into the
MD, they are deposited one after the other until a mes-
sage causes the maximum offset to be exceeded. When
this happens, the MD is unlinked, and the next unex-
pected short message will fall into the next short unex-
pected MD. Once all of the unexpected messages have
been copied out of the unlinked MD, the ME and MD
can be inserted at the end of the short unexpected MEs.

This new strategy allows for the number of unex-
pected messages to be dependent on space rather than
count. It also reduces the number of MDs for short unex-
pected messages to three, significantly reducing the
amount of NIC resources required by MPI. The han-
dling of posted receives and unexpected long protocol
messages did not change. This semantic change to Por-
tals eliminated the need for lists of MDs, so the API was
changed to allow only a single MD per match entry. In
addition, we felt these semantic changes were signifi-
cant enough to warrant an increase in the version num-
ber, so the specification was changed to Portals 3.1.

6 Progress

MPI has asynchronous send and receive calls that allow
high quality implementations the opportunity to overlap
computation and communication. MPI also defines rules
for how asynchronous communication operations should
make progress. In particular, progress on outstanding
asynchronous communication operations is independent
of calls into the MPI library.

Every OS-bypass MPI implementation described in
the current Literature (Lauria and Chien, 1997; O’Carroll
et al, 1998; Prylli et al., 1999; Dimitrov and Skjellum,
1999) requires application processing to move data.
These implementations typically use a two-level proto-
col, where short messages are sent eagerly and long
messages are sent using a rendezvous protocol. As in
our implementation, short eager messages are buffered
at the receiver and copied by the application into the
appropriate receive buffer after context and tag match-
ing occur.

In the long message rendezvous protocol, the sender
sends a request to the receiver. This request is recog-
nized by the application, the context and tag matching
occur, and when the appropriate receive buffer is found,
a message is sent back to sender, indicating the exact
location in memory where the data can be delivered.
However, because the application must be involved in

these transfers, the opportunity for significant overlap is
lost.

Since our implementation sends long messages eagerly,
it can overlap the data transfer at the receiver, provided
the message is expected. If the message is unexpected,
it can overlap the transfer at the sender by using a get
operation. One could argue that this approach makes
progress at the expense of wasting network resources.
The possibility to consume network bandwidth and cre-
ate contention is greater than if a rendezvous protocol
were used. However, since Portals is based on expected
messages, we optimize for the case when MPI receives
are pre-posted, and encourage our application developers
to follow this practice. We are currently investigating the
effect of using an eager protocol for long messages on
application benchmarks and real applications. We expect
that the benefits of overlapping computation and com-
munication will outweigh such drawbacks as increased
network contention.

7 Performance

In this section, we provide some initial performance results
from an experimental implementation of Portals 3.0 on
Myrinet. These results demonstrate the ability to per-
form Portals processing on a programmable NIC.

Each node used for gathering these performance results
contained a 617 MHz Alpha EV67 processor with 256
MB of main memory and Myrinet LANai 9 NIC. Nodes
were connected using a 64-port Mesh64 switch.

For this implementation of Portals on Myrinet, all
reliability and flow control is performed on the card via
a Myrinet Control Program (MCP). Processing of Portals
messages can occur either in the MCP or via a Linux
kernel module. A process can choose to have all pro-
cessing of Portals messages occur on the card, which is
expected to incur minimal host processor overhead, or
have intitial processing done in an interrupt handler on
the host. Once Portals processing has occurred in the
interrupt handler, data is transferred directly from the
network into user space. Both of these methods of pro-
cessing a Portals message employ OS-bypass, since the
OS is not involved in the transfer of data once the final
destination is determined. This is an experimental imple-
mentation of Portals that is currently running on a small
development system. It is currently limited to being able
to send and receive messages into a 4 MB physically
contiguous region of memory.

Figure 10 shows latency performance from a tradi-
tional ping-pong benchmark. The graph shows the half
round-trip latency performance of the Portals MCP imple-
mentation where Portals processing occurs in the MCP
and in the kernel, as well as the performance of our MPI
implementation using each of these two strategies. The
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zero-length Portals latency for the case where Portals
processing occurs in the MCP is 17 pusec, and the overhead
of the MPI implementation adds approximately 5 psec.
Figure 11 shows the corresponding bandwidth perfor-
mance.

The results in Figures 12 and 13 are from the COMB
benchmark suite (Lawry et al., 2002), which character-
izes the amount of overlap of computation and commu-
nication that an MPI implementation can support. These
graphs show the time to complete a given work interval
with and without communication. For this data, 100 KB
messages were being received while performing work.
The difference between the two times is due to overhead
incurred on the host CPU. Figure 12 shows the over-
head for the case where Portals processing is performed
in the kernel. The impact of the interrupt handler is
clearly evident. Figure 13 shows the overhead for Por-
tals processing in the MCP. In this case, there is almost
no impact of message passing on the host CPU.

8 Summary

This paper has described implementations of MPI on
the Portals data movement layer. We have illustrated
how Portals provides the necessary building blocks and
associated semantics to implement MPI very efficiently.
In particular, these building blocks can be implemented
on intelligent network interfaces to provide the necessary
protocol processing for MPI without being specific to
MPI. The implementations described in this paper have
been in production use on a 1792-node Alpha/Myrinet
Linux cluster at Sandia National Laboratories for more
than two years. We have also shown preliminary perfor-
mance data from an implementation of Portals for Myrinet
that demonstrates the ability to efficiently perform Por-
tals address processing on a programmable network
interface card.

9 Ongoing and Future Work

Although the Portals interface was originally intended
to be a user-level data movement layer, the Lustre pro-
ject has adopted Portals as the underlying interface for
its distributed file system (Braam et al., 2002). For some
systems, this requires the Portals interface to be used at
the kernel level rather than at the user level. Supporting
Portals in-kernel has had a slight impact on the interface
and semantics. For example, the 3.0 and 3.1 versions
had semantics that implied direct integration with a runtime
system. Processes could be addressed based on their rank
within a parallel job. Because these ties do not make
sense when Portals is used at the kernel level, we elimi-
nated most of the places where the Portals interface had
direct ties to a runtime system. This change had minimal

impact on the semantics, but we subsequently updated
the version number to 3.2 to reflect the enhancement.
The Lustre project is now working on various kernel-
and user-level implementations of Portals in order to
support their file system on various network and storage
hardware.

Cray, Inc. has also adopted Portals as the high-per-
formance network layer for Sandia’s ASCI Red Storm
machine, which is to be delivered in 2004. Cray and
Sandia are currently working on an implementation of
Portals 3.2 for a custom network interface that utilizes the
HyperTransport links on the AMD Opteron processor.

Sandia and the University of New Mexico are also
working on implementations of Portals for various com-
modity and specialized networks, including gigabit Ether-
net and Quadrics (Petrini et al., 2002). There is also an
effort underway at Los Alamos National Laboratory to
implement Portals 3.2 on Infiniband (2000) hardware.

Sandia is also working on various software layers that
utilize the Portals interface. We are continuing to develop
the Cplant™ parallel runtime system, and are working
on supporting other higher-level message passing and
one-sided data movement layers. MPI Software Tech-
nology, Inc. currently has an implementation of MPI 1.2
and supports portions of MPI 2.0, including one-sided
communications, on top of Portals. We are also working
to support the next generation MPI implementation,
MPICH-2 (Gropp, 2002), on top of Portals.

The current version of the Portals specification and a
reference implementation that supports several different
networks are available under the GNU LGPL from http://
sourceforge.net/projects/sandiaportals.
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